Un estudio dirigido por investigadores del Mass General Cancer Center, miembro del Mass General Brigham, en colaboración con el Instituto Tecnológico de Massachusetts (MIT), en Estados Unidos, ha desarrollado y probado una herramienta de
inteligencia artificial conocida como 'Sybil'. Basándose en análisis por tomografía computarizada torácica de baja dosis (LDCT) de pacientes de Estados Unidos y Taiwán, predijo con exactitud el riesgo de
cáncer de pulmón en individuos con o sin antecedentes significativos de
tabaquismo, según publican sus autores en el 'Journal of Clinical Oncology'.
"Las tasas de
cáncer de pulmón siguen aumentando entre las personas que nunca han fumado o que no lo han hecho en años, lo que sugiere que hay muchos factores de riesgo que contribuyen a esta enfermedad, algunos de los cuales son actualmente desconocidos. En lugar de evaluar los factores ambientales o genéticos individuales, hemos desarrollado una herramienta que puede utilizar imágenes para observar la biología colectiva y hacer predicciones sobre el riesgo de cáncer", apunta la autora
Lecia Sequist, directora del Centro para la Innovación en la Detección Temprana del Cáncer y oncóloga médica en el
Mass General Cancer Center.
El
cáncer de pulmón es la principal causa de
muerte oncológica en todo el mundo. Se ha demostrado que el cribado con LDCT reduce la mortalidad hasta en un 24 por ciento, pero a medida que aumentan las tasas de este tipo de cáncer entre los no fumadores, se necesitan nuevas estrategias para detectar y predecir con exactitud el riesgo de cáncer de pulmón en una población más amplia.
Recomendaciones para la detección del cáncer de pulmón
Las autoridades sanitarias norteamericanas recomiendan la LDCT anual a las personas mayores de 50 años con un historial de 20 paquetes al año, que fumen actualmente o hayan dejado de hacerlo en los últimos 15 años. Sin embargo, menos del 10 por ciento de los pacientes que cumplen los requisitos se someten a una
revisión anual. Para ayudar a mejorar la eficacia del cribado del cáncer de pulmón y ofrecer evaluaciones individualizadas, Sequist y el Centro Oncológico General de Massachusetts se asociaron con investigadores de la Clínica Jameel del MIT. Utilizando datos del National Lung Screening Trial (NLST), el equipo desarrolló 'Sybil', un modelo de aprendizaje profundo que analiza las exploraciones y
predice el riesgo de cáncer de pulmón para los próximos uno a seis años.
"'Sybil' requiere solo una LDCT y no depende de
datos clínicos o anotaciones del
radiólogo. Fue diseñado para ejecutarse en tiempo real en el fondo de una estación de lectura de radiología estándar que permite el apoyo a la decisión clínica en el punto de atención", explica el coautor
Florian Fintelmann, del Departamento de Radiología, División de Imágenes Torácicas e Intervención del Hospital General de Massachusetts.
Así funciona la herramiena de IA con el cáncer
El equipo validó 'Sybil' utilizando tres conjuntos de datos independientes: un conjunto de exploraciones de más de 6.000 participantes en el NLST que 'Sybil' no había visto previamente; 8.821 LDCT del Hospital General de Massachusetts (MGH); y 12.280 LDCT del Hospital Chang Gung Memorial de Taiwán. Este último conjunto de exploraciones incluyó a personas con diversos
antecedentes de tabaquismo, incluidos los que nunca habían fumado.
'Sybil' fue capaz de predecir con exactitud el
riesgo de cáncer de pulmón en todos estos conjuntos. Los investigadores determinaron la precisión de 'Sybil' utilizando el Área Bajo la Curva (AUC), una medida de la capacidad de una prueba para distinguir entre muestras normales y enfermas, en la que 1,0 es una puntuación perfecta. 'Sybil' predijo el cáncer en el plazo de un año con un AUC de 0,92 para los participantes adicionales del NLST, 0,86 para el conjunto de datos del MGH y 0,94 para el conjunto de datos de Taiwán. El programa predijo el cáncer de pulmón en un plazo de seis años con AUC de 0,75, 0,81 y 0,80, respectivamente, para los tres conjuntos de datos.
Esta herramienta de IA puede observar una imagen y predecir el riesgo de que un paciente desarrolle cáncer de pulmón en un plazo de seis años
|
"'Sybil' puede observar una imagen y predecir el riesgo de que un paciente desarrolle
cáncer de pulmón en un plazo de seis años. Estoy entusiasmada con los esfuerzos traslacionales liderados por el equipo del MGH que pretenden cambiar los resultados de pacientes que, de otro modo, desarrollarían una enfermedad avanzada", afirma la coautora y directora de la facultad de la Clínica Jameel, la doctora
Regina Barzilay, miembro del Instituto Koch para la Investigación Integral del Cáncer.
Seguimiento de los pacientes
Los investigadores señalan que se trata de un estudio retrospectivo, y que se necesitan estudios prospectivos que hagan un seguimiento de los pacientes en el futuro para validar 'Sybil'. Además, los participantes estadounidenses en el estudio eran en su inmensa mayoría blancos (92 por ciento), por lo que serán necesarios
estudios futuros para determinar si 'Sybil' puede predecir con exactitud el
cáncer de pulmón entre poblaciones diversas.
Sequist y sus colegas abrirán un
ensayo clínico prospectivo para poner a prueba 'Sybil' en el mundo real y comprender cómo complementa el trabajo de los radiólogos. Además, el código también se ha puesto a disposición del público.
"En nuestro estudio, 'Sybil' fue capaz de detectar patrones de riesgo en la LDCT que no eran
visibles para el ojo humano. Estamos entusiasmados por seguir probando este programa para ver si puede añadir información que ayude a los
radiólogos con el diagnóstico y nos ponga en el camino de personalizar el cribado para los pacientes", afirma Sequist.
Las informaciones publicadas en Redacción Médica contienen afirmaciones, datos y declaraciones procedentes de instituciones oficiales y profesionales sanitarios. No obstante, ante cualquier duda relacionada con su salud, consulte con su especialista sanitario correspondiente.